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Abstract

In this article, we consider increasing sequences of positive integers defined in the
following manner. Let the initial terms a1 and a2 be given, and for any n > 2 define
an to be the smallest integer greater than an−1 which can not be written as a sum
of (distinct) previous terms of the sequence. For various parametrized choices of
the initial terms, we determine precisely the terms of the sequences obtained by
this method. We also conjecture that for all choices of the initial terms, even in a
more general setting, the terms of sequences defined in this manner have interesting
patterns.

1. Introduction.

In this article, we study patterns found in weakly complete sequences constructed

by using a greedy algorithm. An increasing sequence a1, a2, . . . of positive integers

is called complete (see [3, Chapter 8, Section 13]) if every positive integer can be

written as a sum of distinct terms of the sequence. Probably the most well-known

nontrivial example of such a sequence is the sequence of Fibonacci numbers (with

one of the initial 1’s deleted)

1, 2, 3, 5, 8, 13, . . . .

1Corresponding author.
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It is well-known that every positive integer can be written as a sum of distinct terms

of the Fibonacci sequence. For example, we have

19 = 8 + 5 + 3 + 2 + 1

20 = 13 + 5 + 2

21 = 21

22 = 21 + 1

and so on. Note that the number 21 can be considered to be a sum of one term of

the sequence. The theory of complete sequences has been studied, and a theorem

due to Brown [1] gives a simple condition which is both necessary and sufficient for

a sequence to be complete.

An increasing sequence of integers is called weakly complete if every sufficiently

large number can be written as a sum of distinct terms of the sequence, i.e., if

there exists an integer N such that every integer n ≥ N can be written as a sum of

distinct terms of the sequence. For example, it is easy to see that the sequence

1, 100, 102, 104, 106, 108, . . .

is weakly complete, with N = 100.

In this article, we are interested in specifying the initial terms of the sequence and

constructing a weakly complete sequence from this data using the greedy algorithm.

To state this more formally, we allow s initial terms a1 < a2 < · · · < as to be

specified, and also specify N = as + 1. Then for n > s, we define an to be the

smallest number such that an > an−1 and such that an cannot be written as a sum

of distinct previous terms of the sequence. For example, if we set a1 = 1 and a2 = 5,

then we obtain the sequence

1, 5, 7, 9, 11, 29, 31, 89, 91, 269, 271, 809, 811, 2429, 2431, . . . .

Similarly, starting with a1 = 1 and a2 = 8 leads to the sequence

1, 8, 10, 12, 14, 16, 54, 56, 58, 222, 224, 226, 894, 896, 898, . . . ,

and starting with a1 = 2, a2 = 3, and a3 = 9 yields the sequence

2, 3, 9, 10, 16, 17, 23, 72, 73, 79, 296, 297, 303, 1192, 1193, 1199, . . . .

In all three of these sequences, the numbers appear to quickly organize themselves

into blocks with a common pattern. For example, in the first sequence each block

has two elements with a difference of 2. Thus one can think of this sequence as being
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a union of the “shifted sets” bn + {−1, 1}, n = 0, 1, 2, . . .. Looking at the bn is also

interesting, as one quickly guesses the formula bn = 10 ·3n. Similar formulas can be

found for the other two sequences above, and in fact, if one tries any combination of

initial terms, formulas like this appear to always exist. Based on these observations,

we make the following conjecture.

Conjecture 1. Suppose that a1, a2, . . . is an increasing, weakly complete sequence,

which has been constructed by the greedy algorithm as described above. Then there

exist numbers a and b and a set S such that the terms of the sequence are exactly

the set

I ∪ J ∪
∞⋃
i=0

(a · bi + S),

where I is the set of initial terms, J is a small set of “junk terms,” and for any

real number r, the set r +S is defined by adding r to each element of S. Moreover,

the junk terms all lie between the largest element of I and the smallest element of

the union
⋃∞

i=0(a · bi + S).

Our goal in this article is to prove this conjecture for various choices of two initial

elements of the sequence (i.e., s = 2), giving formulas for a, b, and S. In particular,

we prove the three theorems below.

Theorem 1. Suppose that n ≥ 4 is an integer. Then the conjecture is true for

sequences beginning with a1 = 1 and a2 = n. For these sequences, we have I =

{1, n} and J = {n + 2}. The numbers a and b are given by

a = n + b + 2 and b =

⌊
n + 1

2

⌋
.

Finally, S is the set {2j − b + 2 : 0 ≤ j ≤ b− 2}.

Theorem 2. Suppose that n ≥ 2. Then the conjecture is true for sequences begin-

ning with a1 = n and a2 = n + 1. For these sequences, we have I = {n, n + 1} and

J = ∅. The numbers a and b are given by

a =
3n + 2

2
and b = n.

Finally, we have S = {j − n
2 + 1 : 0 ≤ j ≤ n− 2}.

Theorem 3. Suppose that n ≥ 2. Then the conjecture is true for sequences be-

ginning with a1 = n and a2 = 2n. For these sequences, we have I = {n, 2n} and

J = {2n + 1, 2n + 2, . . . , 3n− 1, 4n}. The numbers a and b are given by

a =
5n2 + 6n

2
and b = n.
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Finally, we have S = {j − n
2 + 1 : 0 ≤ j ≤ n− 2}.

We note that while these theorems are only stated for sufficiently large n, they

are in fact true for all values of n, as the remaining cases can easily be dealt with

individually.

In the proof of each of these theorems, it will be convenient to denote the set

a · bi + S by Si. To prove the theorems, we first show that after the initial terms,

the next terms of the sequence will be the elements of J , and then the elements of

S0. Following this, we proceed by induction on i, assuming that the initial elements

of the sequence are Pi = I ∪ J ∪ S0 ∪ · · · ∪ Si, and showing that the next terms are

those in Si+1. In order to do this, the key step is to consider the sets of numbers

represented by Pi−1 and exactly m elements of Si. We will show that these sets are

essentially sets of consecutive integers, and that they typically overlap each other.

This will show that there are no additional elements of the sequence smaller than

those in Si+1. After this, it will not be difficult to show that the elements of Si+1

cannot be written as sums of the previous elements, and that they must therefore

be the next block in the sequence.

Sections 2, 3, and 4 of this article are devoted to the proofs of the three theorems.

Unfortunately, although all of the proofs use the same methods, we are not able to

prove significant parts of the theorems at the same time. In Section 5, we discuss

in general terms the sequences that arise from two initial terms, and for a broad

range of initial values we conjecture formulae for the numbers a and b and the set

S. We note that since this work was completed, this conjecture has been partially

proven (see [2]).

We finish this introduction by briefly mentioning some of the notation and ter-

minology used in this article. If S is a finite set, then we write R(S) for the set of

all possible sums of distinct elements of S, and write Rm(S) for the set of all sums

of (exactly) m distinct elements of S. We will use interval notation to represent

sets of integers, so that [a, b] = {x ∈ Z : a ≤ x ≤ b}. If we have two intervals

[a, b] and [c, d] with a ≤ b, c and b, c ≤ d, then we will say that these intervals are

contiguous if [a, b] ∪ [c, d] = [a, d]. This occurs if and only if c ≤ b + 1. Finally, we

will at times refer to “all numbers of the same parity in the interval [a, b].” When

we do this, the endpoints a and b will have the same parity, and the expression is

intended to refer to all numbers in the interval which have the same parity as the

endpoints.
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2. The Proof of Theorem 1.

In our proof of Theorem 1, it will be convenient to define sij = abi − b + 2 + 2j

for 0 ≤ j ≤ b − 2. Then the sets Si = {si0, . . . , si,b−2} and a · bi + S coincide. We

can trivially see that the set I gives the first two terms of the sequence, and that

the set J gives the third term. We claim that the next terms of the sequence are

n+4, n+6, . . . , n+2b, the elements of S0. This follows easily from the observations

that if s is an element of the sequence then s + 1 is not, and that the smallest

possible sum of two elements of the sequence not involving 1 is 2n + 2.

For any i ∈ Z≥0, define the set Pi as in the introduction, and assume that the

sequence begins with Pk for some k. We need to show that the next terms of the

sequence are the elements of Sk+1. First, we need to show that every integer be-

tween n + 1 and abk+1 − b + 2 (the smallest element of Sk+1) can be written as

a sum of terms of Pk. By hypothesis, we already know that every integer up to

abk + b− 2 (the largest element of Sk) can be represented, and so we only need to

show that every integer in the interval [abk+b−1, abk+1−b+1] has a representation.

By the definition of the sequence, we have

{1} ∪
[
n, abk − b + 1

]
⊆ R(Pk−1).

Now, for any m consider the set Rm(Sk). It is clear that the elements of Rm(Sk)

are all elements of the form

mabk −mb + 2m + 2s,

where s can be any integer from 0+1+ · · ·+(m−1) to (b−m−1)+ · · ·+(b−2). In

this way, we see that Rm(Sk) contains all integers of the same parity in the interval

[mabk−mb+m2 +m,mabk +mb−m2−m]. By adding 1 to each of these integers,

we see that every integer in the interval

Am =
[
mabk −mb + m2 + m,mabk + mb−m2 −m + 1

]
can be represented by elements of Pk.

Next, for any element s ∈ Rm(Sk), we consider the set s+R(Pk−1). Clearly this

set contains the interval [s+n, s+abk−b+1]. Keeping in mind that the elements s

are consecutive numbers of the same parity, it is easy to see that these sets of sums

overlap for consecutive values of s. Combining all these sets of sums, we see that

every number in the interval

Bm =
[
mabk −mb + m2 + m + n, (m + 1)abk + (m− 1)b−m2 −m + 1

]



INTEGERS: 10 (2010) 6

can be represented as a sum of elements of Pk.

Now, if we consider the sets A1 and B1, we see that we have representations for

all numbers in the intervals [abk − b+ 2, abk + b− 1] and [abk − b+ 2 + n, 2abk − 1].

We can see that

abk − b + 2 + n =

{
abk + b + 1, if n is odd;
abk + b + 2, if n is even.

Thus we see that we do not yet have a representation for abk + b, and if n is even

then we are also missing a representation for abk + b + 1. To find representations

for these integers, we begin by noting that

∑
s∈Si

s =

b−2∑
j=0

(abi − b + 2 + 2j) = (b− 1)abi, (1)

and hence that ∑
s∈Pk−1

s = 1 + n + (n + 2) +

k−1∑
i=0

∑
s∈Si

s

= 2n + 3 + a(bk − 1)

=

{
abk + b, if n is odd;

abk + b + 1, if n is even.

(2)

When n is even, we then see that∑
s∈Pk−1−{1}

s = abk + b.

Thus we have representations for all numbers in the interval

C1 =
[
abk − b + 2, 2abk − 1

]
.

Similarly, if we consider the sets Ab−2 and Bb−2, we have representations for all

numbers in the intervals [(b− 2)abk − b+ 2, (b− 2)abk + b− 1] and [(b− 2)abk − b+

2 + n, (b− 1)abk − 1]. This time, we have

(b− 2)abk − b + 2 + n =

{
(b− 2)abk + b + 1, if n is odd;
(b− 2)abk + b + 2, if n is even.

This time, we do not yet have a representation for (b − 2)abk + b, and if n is even

then we are also missing a representation for (b − 2)abk + b + 1. Note now that

(b− 3)abk ∈ Rb−3(Sk), and so is represented by our sequence. In the same way as

above, we can now see that if n is odd, then

(b− 2)bk + b = (b− 3)abk +
∑

s∈Pk−1

s,
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and if n is even then we have

(b− 2)bk + b = (b− 3)abk +
∑

s∈Pk−1−{1}

s

and

(b− 2)bk + b + 1 = (b− 3)abk +
∑

s∈Pk−1

s.

Thus we have representations for all numbers in the interval

Cb−2 =
[
(b− 2)abk − b + 2, (b− 1)abk − 1

]
.

Continuing, we see from (1) that
∑

s∈Sk
s = (b − 1)abk. If we add this to each

element of R(Pk−1), then we obtain representations of (b − 1)abk + 1 and every

number in the interval [(b− 1)abk + n, abk+1 − b + 1]. To represent the numbers in

between, if n is odd, then by (2), adding
∑

s∈Pk−1
s to each element of Rb−2(Sk)

gives representations of all numbers of the same parity from (b − 1)abk + 2 to

(b− 1)abk + n− 1. If we delete the term 1 from each of these representations, then

combined with the previous sentence we see that we can represent every integer in

the interval [(b− 1)abk + 1, (b− 1)abk +n− 1]. Thus, we have found representations

for every number in the interval

Cb−1 =
[
(b− 1)abk, abk+1 − b + 1

]
.

On the other hand, if n is even, then adding
∑

s∈Pk−1
s to each element of

Rb−2(Sk) gives representations of all numbers of the same parity from (b−1)abk +3

to (b − 1)abk + n − 1. Combining this with the integers obtained by deleting the

element 1 from each of these representations, we have representations for all num-

bers in the interval [(b− 1)abk + 2, (b− 1)abk + n− 1]. Thus we again find that we

can represent all elements of Cb−1.

If b − 2 ≥ 3, which happens if and only if n ≥ 9, we will now show that the

intervals Am and Bm are contiguous for 2 ≤ m ≤ b − 3. We see from the above

formulae that these intervals are contiguous if and only if

(mabk + mb−m2 −m + 1)− (mabk −mb + m2 + m + n) ≥ −1,

that is, if and only if

2mb− 2m2 − 2m + 2− n ≥ 0. (3)

If we have m = 1 or m = b − 2, then the expression on the left-hand side equals

2b − 2 − n, which is negative since n ≥ 9 and b ≤ (n + 1)/2. On the other hand,
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if m = 2 or m = b− 3, then this expression equals 4b− 10− n. When we consider

the definition of b and the fact that n ≥ 9, we see that this expression must be

non-negative. Considering (3) as a quadratic in m, we then see that one root must

lie between 1 and 2, and the other between b−3 and b−2. Therefore (3) is satisfied

for 2 ≤ m ≤ b− 3, and so the sets are in fact contiguous. Thus for each of these m,

we have representations for all numbers in the interval

Cm =
[
mabk −mb + m2 + m, (m + 1)abk + (m− 1)b−m2 −m + 1

]
.

Note that this expression for Cm also holds when m = 1, b− 2, and b− 1.

Finally, we wish to show that for any m, the sets Cm and Cm+1 are contiguous.

Subtracting the smallest element of Cm+1 from the largest element of Cm, we see

that this happens if and only if

2mb− 2m2 − 4m− 1 ≥ −1,

or in other words if and only if 2m(b − 2 −m) ≥ 0. Since 1 ≤ m ≤ b − 2, we see

that this is always true. Since the sets Cm are contiguous for consecutive values of

m, we see that we have found a representation for every number in the interval

C1 ∪ · · · ∪ Cb−1 =
[
abk − b + 2, abk+1 − b + 1

]
.

Thus every number between n + 1 and the smallest element of Sk+1 can be repre-

sented by the elements of Pk.

To complete the induction, we need to show that the elements of Sk+1 are the

next elements of the sequence. First, we note that the difference between any two

elements of Sk+1 is at most 2b− 4, which is less than n. Hence the only way to use

one element s of this interval to represent another is in the (obvious) representation

of s + 1. From this, it follows that if we can show that no element of Sk+1 can

be represented using only elements of Pk, then the elements of Sk+1 are the next

elements of the sequence.

To accomplish this, consider first a hypothetical representation of an element of

Sk+1 which uses at most b − 2 elements of Sk. The largest possible sum of these

b− 2 elements is

b−2∑
j=1

(abk − b + 2 + 2j) = (b− 2)abk + b− 2.

Hence the smallest possible remainder, which must be represented using elements

of Pk−1 is (
abk+1 − b + 2

)
−
(
(b− 2)abk + b− 2

)
= 2abk − 2b + 4.
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However, from (2) we can see that

2abk − 2b + 4 >
∑

s∈Pk−1

s.

Therefore any possible representation of an element of Sk+1 which uses only elements

of Pk must use all b−1 elements of Sk. By (1), the sum of these elements is (b−1)abk.

Therefore if we try to represent the element sk+1,j = abk+1 − b + 2 + 2j, then we

must use only elements of Pk−1 to represent the remainder

sk+1,j − (b− 1)abk = abk − b + 2 + 2j.

However, this remainder is an element of Sk, and hence cannot be represented

by elements of Pk−1. This shows that no element of Sk+1 can be represented by

elements of Pk, and hence these elements are the next terms of the sequence. This

completes the proof of the theorem. 2

3. The Proof of Theorem 2.

This time, after the first two elements n and n + 1, we clearly cannot represent

any number smaller than 2n+ 1. Therefore the next elements of the sequence must

be n + 2, n + 3, . . . , 2n, which are the elements of S0. Defining Pi again as in the

introduction, we assume that the sequence starts with Pk for some k. We need to

show that the next elements of the sequence are the elements of Sk+1.

By the definition of the sequence, we know that all numbers in the interval[
n, ank − 1 +

n

2

]
can be represented, since the right-hand endpoint is the largest element of Sk. Now,

from the definition of the sequence, we have[
n, ank − n

2

]
⊆ R(Pk−1),

and it is easy to see that for any m we have

Rm(Sk) =

[
mank −m

(
n−m− 1

2

)
,mank + m

(
n−m− 1

2

)]
.

We now add each element of Rm(Sk) to each element of
[
n, ank − n

2

]
. Since both of

these sets are sets of consecutive integers, we find representations for every number

in the interval

Bm =

[
mank −m

(
n−m− 1

2

)
+ n, (m + 1)ank + m

(
n−m− 1

2

)
− n

2

]
.
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Consider now the intervals R1(Sk) and B1. Comparing the endpoints, we see

that these intervals are almost contiguous. We are missing only a representation

for the number ank + n
2 . To represent this number, we can see that∑

s∈Si

s = (n− 1)ani (4)

for all i, and hence

∑
s∈Pk−1

= n + (n + 1) +

k−1∑
i=0

∑
s∈Si

s

= 2n + 1 +

k−1∑
i=0

(n− 1)ani

= ank + n
2 .

(5)

Thus we now have representations for all elements of the interval

C1 =
[
ank − n

2
+ 1, 2ank − 1

]
.

Suppose now that n ≥ 4, and consider the intervals Rn−2(Sk) and Bn−2. We

have

Rn−2(Sk) =
[
(n− 2)ank − n

2
+ 1, (n− 2)ank +

n

2
− 1
]
.

Adding all elements of Rn−2(Sk) to all elements of
[
n, ank − n

2

]
, we see that we can

represent the entire interval

Bn−2 =
[
(n− 2)ank +

n

2
+ 1, (n− 1)ank − 1

]
.

Comparing the last two intervals, we see that we are missing a representation for

(n− 2)ank + n
2 . However, from (5) we can write

(n− 2)ank +
n

2
= (n− 3)ank +

∑
s∈Pk−1

s,

and since (n − 3)ank ∈ Rn−3(Sk), this gives us a representation. Hence we can

represent all numbers in the interval

Cn−2 =
[
(n− 2)ank − n

2
+ 1, (n− 1)ank − 1

]
.

Next, if we add all the terms of Sk together, the sum is (n−1)ank by (4). Adding

this to each element of
[
n, ank − n

2

]
gives the interval

Bn−1 =
[
(n− 1)ank + n, ank+1 − n

2

]
.
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We can represent the missing elements from (n− 1)ank + 1 to (n− 1)ank + n− 1

by noting that

(n− 1)ank + j =
(

(n− 2)ank − n

2
+ j
)

+
∑

s∈Pk−1

s,

and that when 1 ≤ j ≤ n− 1, the first term on the right is an element of Rn−2(Sk).

Hence we can represent all elements in the interval

Cn−1 =
[
(n− 1)ank, ank+1 − n

2

]
.

Now, if n ≥ 5, then we still need to consider values of m between 2 and n − 3.

From our formulae for the intervals Rm(Sk) and Bm, we can see that these two sets

are contiguous whenever

mn−m2 −m− n + 1 ≥ 0. (6)

Considering the polynomial above as a quadratic in m, we see that if m = 1 or

m = n − 2, then this polynomial is equal to −1, and that if m = 2 or m = n − 3,

then this polynomial is equal to n−5, which is non-negative. Thus one of the roots

of this quadratic satisfies 1 < m ≤ 2 and the other satisfies n−3 ≤ m < n−2. Since

the coefficient of m2 is negative, this shows that the polynomial is non-negative for

2 ≤ m ≤ n−3. Hence the intervals Rm(Sk) and Bm are contiguous for these values

of m, whence we have representations for all terms in the interval

Cm =

[
mank −m

(
n−m− 1

2

)
, (m + 1)ank + m

(
n−m− 1

2

)
− n

2

]
.

Note that this expression for Cm also holds when m = 1, n− 2, and n− 1.

To show that the intervals Cm are contiguous for consecutive values of m, we see

that Cm and Cm+1 are contiguous if and only if

mn− 2m−m2 ≥ 0.

Since the polynomial factors as m(n− 2−m), we see that this does hold for all m

with 0 ≤ m ≤ n−2. Since these intervals are contiguous, we may combine them and

see that we have representations for every number from ank − n
2 + 1 to ank+1 − n

2 .

This shows that we can represent all numbers less than the elements of Sk+1.

To complete the proof, we must show that the elements of Sk+1 are the next

members of the sequence. First, note that since the difference between any two

elements of Sk+1 is at most n − 2 and the sequence clearly cannot represent any

number smaller than n, no element of Sk+1 could ever be used in a representation
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of another member of this set. Therefore any hypothetical representation of an

element of Sk+1 must use only elements of Pk.

Now, let s = ank+1− n
2 +1+j be an element of Sk+1, and consider a hypothetical

representation of s which uses at most n − 2 elements of Sk. Then the remainder,

which must be represented using elements of Pk−1, is at least(
ank+1 − n

2
+ 1
)
−

n−2∑
i=1

(
ank − n

2
+ 1 + i

)
= 2ank − n + 2.

But from (5), the sum of all the elements of Pk−1 is only ank + n
2 , which is too

small to represent this remainder. So any possible representation of s must use

all of the elements of Sk. However, by (4) the sum of all the elements of Sk is

(n− 1)ank, which means that the remainder to be represented by elements of Pk−1
is ank− n

2 + 1 + j. But this number is an element of Sk, and so the definition of the

sequence implies that it cannot be represented by elements of Pk−1. Since none of

the elements of Sk+1 can be represented using previous terms of the sequence, they

must actually be the next terms. This completes the induction, and also the proof

of the theorem. 2

4. The Proof of Theorem 3.

While the details are different, this proof proceeds along the same lines as the pre-

vious two proofs. Unfortunately, since the “junk” set J is more complicated than

before, the proof is a bit longer. Since the first two elements n and 2n sum to

3n, it is clear that no number smaller than 3n can be represented, and so the next

terms of the sequence are 2n + 1, . . . , 3n − 1. By adding n to each of these num-

bers, we find representations of 3n + 1, . . . , 4n − 1, so these numbers will not be

in our sequence. To see that 4n cannot be represented by the elements we have

so far, note that 4n cannot be written as a sum of any two of our elements, and

that the smallest possible sum of three or more elements is 5n+1, which is too large.

To show that the next terms of the sequence are the elements of S0, we first show

that the numbers from 4n + 1 to a − n
2 all can be represented by the elements of

I ∪ J . Consider the set Dm = Rm([2n, 3n − 1]), and define Em = n + Dm. Since

both Dm and Em are intervals for all m, we can see as before that we have

Dm =

[
2mn +

m(m− 1)

2
, 3mn− m(m + 1)

2

]
and

Em =

[
2mn +

m(m− 1)

2
+ n, 3mn− m(m + 1)

2
+ n

]
.
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It is then easily seen that Dm and Em are contiguous if and only if (n−1−m)(m−
1) ≥ 0, and that this is true for all m under consideration. Thus for each m we

have a representation for each number in the interval

Fm =

[
2mn +

m(m− 1)

2
, 3mn− m(m + 1)

2
+ n

]
.

Now, the intervals Fm and Fm+1 are contiguous if and only if mn −m2 −m −
n + 1 ≥ 0. This is the same as equation (6) from the previous section, where we

saw that it holds for 2 ≤ m ≤ n− 3, provided that n ≥ 5. Therefore we know that

the elements in each of the three intervals

F1 = [2n, 4n− 1]

Fmid =

n−2⋃
m=2

Fm =

[
4n + 1,

5n2 − 7n

2
− 1

]
Fn−1 =

[
5n2−7n

2 + 1, 5n2−3n
2

]
are represented by the sequence. Note that if n = 2 then we only have the interval

F1, and that if n = 3, then we only have F1 and Fn−1. If we add 4n to each element

of each of these intervals (noting that this term has not been used in any of our

representations so far), we find that we have representations for all elements in each

of the intervals

G1 = [6n, 8n− 1]

Gmid =
[
8n + 1, 5n2+n

2 − 1
]

Gn−1 =
[
5n2+n

2 + 1, 5n2+5n
2

]
=
[
5n2+n

2 + 1, a− n
2

]
.

The three sets F1, Fmid, Fn−1 are almost contiguous, except that they do not

contain the elements 4n and (5n2 − 7n)/2. Since 4n is one of the elements of the

sequence, we know that it has a representation. For the other number, we consider

various possible values of n. If n = 2, then (5n2 − 7n)/2 = 3, which by definition is

not represented by the sequence. If n = 3 or n = 4, then we can calculate directly

that (5n2 − 7n)/2 is represented by the sequence. Finally, if n ≥ 5, it is not hard

to see that

8n + 1 ≤ 5n2 − 7n

2
≤ 5n2 + n

2
− 1,

and hence that (5n2 − 7n)/2 ∈ Gmid. Hence this number is represented by the

sequence whenever n ≥ 3.

Similarly, note that the three sets G1, Gmid, Gn−1 together represent every num-

ber from 6n to a− n
2 except for 8n and (5n2 + n)/2. One can see that

5n2 + n

2
= n +

3n−1∑
s=2n

s,
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and so this number always has a representation. To represent 8n, we can calculate

representations explicitly when n = 3 and n = 4, and as above, we can show that

8n ∈ Fmid when n ≥ 5. Thus this number is also represented by the sequence.

Putting all these intervals together, we see that every number less than the smallest

element of S0 has a representation.

To show that the elements of S0 are the next elements of the sequence, we see

as before that no element of S0 can be used in a representation of another element

of this set. Now, if we try to represent an element of S0 without using all of the

elements of [2n, 3n−1], the largest sum we can make is a− n
2 , which is smaller than

any element of S0. Thus any such representation must use all of the elements of this

interval. However, if we add n to all of these elements, we obtain (5n2+n)/2, which

is still smaller than any element of S0, and if we add 4n to all of these elements,

then we obtain a + n
2 , which is larger than any element of S0. Thus none of the

elements of S0 can be represented by previous terms of the sequence, and must be

the next terms.

Now suppose we know that the sequence begins with Pk for some k. To show

that all the numbers between 2n and the smallest element of Sk+1 are represented

by the sequence, we begin by noting that by definition, all the numbers from 2n to

ank + n
2 − 1 are represented. We know that we have

{n} ∪
[
2n, ank − n

2

]
⊆ R(Pk−1)

and we also have

Rm(Sk) =

[
mank −m

(
n−m− 1

2

)
,mank + m

(
n−m− 1

2

)]
.

By adding n to each element of Rm(Sk), we have representations for each element

in the interval

Am =

[
mank −m

(
n−m− 1

2

)
+ n,mank + m

(
n−m− 1

2

)
+ n

]
,

and by adding each element of
[
2n, ank − n

2

]
to each element of Rm(Sk), we obtain

the interval

Bm =

[
mank −m

(
n−m− 1

2

)
+ 2n, (m + 1)ank + m

(
n−m− 1

2

)
− n

2

]
.

The above formulas give

R1(Sk) =
[
ank − n

2 + 1, ank + n
2 − 1

]
,

A1 =
[
ank + n

2 + 1, ank + 3n
2 − 1

]
,
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and

B1 =

[
ank +

3n

2
+ 1, 2ank − 1

]
,

but we have not yet found representations for ank + n
2 or ank + 3n

2 . To represent

these, note that we have ∑
s∈Si

s = (n− 1)ani (7)

for any i. Thus we see that

ank +
3n

2
=

∑
s∈Pk−1

s and ank +
n

2
=

∑
s∈Pk−1−{n}

s.

Therefore we have representations for all numbers in the interval

C1 =
[
ank − n

2
+ 1, 2ank − 1

]
.

If n ≥ 4, then the case m = n− 2 is not included in the above, and we have

Rn−2(Sk) =
[
(n− 2)ank − n

2 + 1, (n− 2)ank + n
2 − 1

]
,

An−2 =
[
(n− 2)ank + n

2 + 1, (n− 2)ank + 3n
2 − 1

]
,

and

Bn−2 =

[
(n− 2)ank +

3n

2
+ 1, (n− 1)ank − 1

]
.

We have not yet found representations for (n− 2)ank + n
2 or (n− 2)ank + 3n

2 . To

represent these, note that (n− 3)ank ∈ Rn−3(Sk). This yields the representations

(n− 2)ank +
n

2
= (n− 3)ank +

∑
s∈Pk−1−{n}

s

and

(n− 2)ank +
3n

2
= (n− 3)ank +

∑
s∈Pk−1

s.

Hence we can represent all the elements of the interval

Cn−2 =
[
(n− 2)ank − n

2
+ 1, (n− 1)ank − 1

]
.

By (7) with i = k, we can add (n− 1)ank to each element of R(Pk−1) to obtain

representations of (n− 1)ank + n and the interval[
(n− 1)ank + 2n, ank+1 − n

2

]
.
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This time, we have not yet represented the numbers (n−1)ank+j or (n−1)ank+n+

j, for 1 ≤ j ≤ n−1. To represent these, we note that the number (n−2)ank− n
2 +j

is an element of Rn−2(Sk) for each j, and so we have

(n− 1)ank + j =
(

(n− 2)ank − n

2
+ j
)

+
∑

s∈Pk−1−{n}

s

and

(n− 1)ank + n + j =
(

(n− 2)ank − n

2
+ j
)

+
∑

s∈Pk−1

s.

This gives representations for the numbers in the interval

Cn−1 =
[
(n− 1)ank, ank+1 − n

2

]
.

If n ≥ 5, then we still need to deal with the values of m from 2 to n− 3, and we

will show that for each of these n, the sets Rm(Sk), Am, and Bm are contiguous.

Considering our formulae for these sets, we see that the first two are contiguous if

and only if we have mn −m2 −m − n + 1 ≥ 0. But this is the same as equation

(6), which we have already shown holds for 2 ≤ m ≤ n− 3. Equation (6) also turns

out to be the equation to decide whether Am and Bm are contiguous, and so we

know that these sets have this property also. Thus we have representations for all

numbers in the interval

Cm =

[
mank −m

(
n−m− 1

2

)
, (m + 1)ank + m

(
n−m− 1

2

)
− n

2

]
.

Note that this formula for Cm still holds when m = 1, n− 2, and n− 1.

Finally, we show that the sets Cm and Cm+1 are contiguous. We can see that

this is true if and only if we have m(n − m − 2) ≥ 0, which is clearly true when

1 ≤ m ≤ n − 2, as desired. Hence we can combine all the intervals Cm into one

interval, and this shows that we have representations for all numbers smaller than

the elements of Sk+1.

Now we need to show that the elements of Sk+1 are the next elements of the

sequence. As before, no element of this set can be used in a representation of

another element from the set. Hence we need to show that no element of Sk+1 can

be represented by the elements of Pk. The largest possible sum of exactly n − 2

elements of Sk is (n − 2)ank + n
2 − 1. Hence, if we try to represent an element

of Sk+1 using at most n − 2 elements of Sk, the remainder to be represented by

elements of Pk−1 is at least(
ank+1 − n

2
+ 1
)
−
(

(n− 2)ank +
n

2
− 1
)

= 2ank − n + 2.
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However, we have seen that the sum of all of the elements of Pk−1 is ank + 3n
2 ,

which is smaller than this remainder. Thus any possible representation of s =

ank+1 − n
2 + 1 + j ∈ Sk+1 must use all of the elements of Sk. Since the sum of

these elements is (n−1)ank, the remainder to be represented by elements of Pk−1 is

ank− n
2 + 1 + j. But this number is an element of Sk, and so cannot be represented

by elements of Pk−1. This completes the induction and the proof of the theorem.

2

5. Some General Observations.

In addition to proving the theorems above, we spent some time searching for a

general formula for the terms of the sequence which would arise for any two initial

terms. Unfortunately, this seems to be difficult. We did discover that the “right”

way to look at these sequences appears to be to write the first two terms as n and

n+d, and to consider the relationship between d and n. When d = n, then we have

Theorem 3 of this article. If d < n, then the formulae for the terms of the sequences

do appear to be related, and we make the following conjecture.

Conjecture 2. If a sequence defined by our method begins with a1 = n and a2 =

n+ d, with d < n, then the elements of the sequence are exactly the elements of the

set

I ∪ J ∪
∞⋃
i=1

(ani + S)

(note that the indexed union starts with i = 1), where I = {n, n+ d}, J = {n+ d+

1, n + d + 2, . . . , 2n + d− 1}, and

a =
3n2 + (2d− 3)n− 4d + 2

2(n− 1)
.

Finally, the set S is given by

S = {−c + j : 0 ≤ j ≤ n− 1, j 6= d− 1} ,

where

c =
n2 − n− 2(d− 1)

2(n− 1)
.

We note that since the work in this article was completed, this conjecture has been

partially (when d ≤ n− 8) proven by Fox and the first author [2].

The sequences with d > n appear to be more complicated to study. Although

for any particular sequence it appears possible to conjecture and prove a formula

similar to the ones in this article, it seems to be more difficult to give a general



INTEGERS: 10 (2010) 18

formula in terms of n and d for the parameters a, b, and S in Conjecture 1. While

the formulae for these parameters do appear to have patterns, we are at this point

unable to conjecture a general formula for them.
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